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Abstract: The Burgers equation, a fundamental partial differential equation (PDE) in applied mathematics and 

physics, is widely studied due to its applications in fluid dynamics, gas dynamics, traffic flow, and nonlinear wave 

propagation. Named after Johannes Martinus Burgers, this equation combines nonlinear convection and diffusion, 

making it a simplified model for complex phenomena like turbulence and shock waves. The one-dimensional Burgers 

equation is typically expressed as: 

𝝏𝒖

𝝏𝒕
+ 𝒖

𝝏𝒖

𝝏𝒙
=  𝝂

𝝏𝟐𝒖

𝝏𝒙𝟐
 

where  𝒖(𝒙, 𝒕) represents the velocity field, 𝝂 > 𝟎  is the kinematic viscosity, 𝒕 is time, and 𝒙 is the spatial coordinate. 

The nonlinear term 𝒖
𝝏𝒖

𝝏𝒙
  introduces complexity, making analytical solutions challenging except in specific cases. As 

a result, semi-analytical and numerical methods have been developed to approximate solutions to the Burgers 

equation. 

Among these methods, the Differential Transform Method (DTM) and the Adomian Decomposition Method (ADM) 

are two powerful semi-analytical techniques that have gained attention for their ability to handle nonlinear PDEs 

efficiently. This article provides a detailed comparison of DTM and ADM when applied to the Burgers equation, 

examining their theoretical foundations, implementation procedures, advantages, limitations, and performance in 

terms of accuracy, computational efficiency, and applicability. 
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1.   OVERVIEW OF THE DIFFERENTIAL TRANSFORM METHOD (DTM) 

The Differential Transform Method is a semi-analytical technique based on Taylor series expansions. It transforms a 

differential equation and its initial or boundary conditions into an algebraic equation in the transform domain, which can be 

solved iteratively. The DTM was first introduced by Zhou in 1986 for solving linear and nonlinear electrical circuit problems 

and has since been extended to various differential equations, including PDEs like the Burgers equation. 

1.1 Theoretical Basis of DTM 

The DTM is grounded in the concept of the differential transform, which is defined for a function  𝑢(𝑥, 𝑡) at a point (𝑥0, 𝑡0) 

as follows: 

𝑈(𝑘, ℎ) =
1

𝑘! ℎ!
[

𝜕𝑘+ℎ

𝜕𝑥𝑘𝜕𝑡ℎ
𝑢(𝑥, 𝑡)]

𝑡=𝑡0

𝑥=𝑥0

 

about:blank
about:blank
https://doi.org/10.5281/zenodo.15303937


International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 13, Issue 1, pp: (20-25), Month: April 2025 - September 2025, Available at: www.researchpublish.com 

 

Page | 21 
Research Publish Journals 

 

where  𝑈(𝑘, ℎ) is the differential transform of  𝑢(𝑥, 𝑡), and 𝑘 and ℎ are the transform variables corresponding to the spatial 

and temporal derivatives, respectively. The inverse transform reconstructs the solution as: 

𝑢(𝑥, 𝑡) = ∑ ∑ 𝑈(𝑘, ℎ)(𝑥 − 𝑥0)𝑘(𝑡 − 𝑡0)ℎ

∞

ℎ=0

  

∞

𝑘=0

 

For practical computations, the series is truncated to a finite number of terms, yielding an approximate solution. The DTM 

converts the Burgers equation into a recurrence relation by applying transform rules for derivatives and nonlinear terms.  

1.2 Application of DTM to the Burgers Equation 

To apply DTM to the Burgers equation, consider the standard form: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
=  𝜈

𝜕2𝑢

𝜕𝑥2
 

with initial condition  𝑢(𝑥, 0)  =  𝑓(𝑥) 

 and appropriate boundary conditions. The DTM transforms each term as follows: 

 Time derivative:  
𝜕𝑢

𝜕𝑡
→ (ℎ + 1)𝑈(𝑘, ℎ + 1) 

 Spatial second derivative: 
𝜕2𝑢

𝜕𝑥2 → (𝑘 + 1)(𝑘 + 2)𝑈(𝑘 + 2, ℎ) 

 Nonlinear term: The term  𝑢
𝜕𝑢

𝜕𝑥
  is handled using the convolution property of DTM. If 

𝜕𝑢

𝜕𝑥
 , then  𝑉(𝑘, ℎ) =

(𝑘 + 1)𝑈(𝑘 + 1, ℎ), and the transform of the product is: 

𝑈. 𝑉 = ∑ ∑ 𝑈(𝑚, 𝑛)𝑉(𝑘 − 𝑚, ℎ − 𝑛)

ℎ

𝑛=0

  

𝑘

𝑚=0

 

Applying these transforms to the Burgers equation yields a recurrence relation for 𝑈(𝑘, ℎ): 

(ℎ + 1)𝑈(𝑘, ℎ + 1) = 𝑣(𝑘 + 1)(𝑘 + 2)𝑈(𝑘 + 2, ℎ) − ∑ ∑ 𝑈(𝑚, 𝑛)𝑉(𝑘 − 𝑚, ℎ − 𝑛)

ℎ

𝑛=0

  

𝑘

𝑚=0

 

The initial condition 𝑢(𝑥, 0)  =  𝑓(𝑥) 

 is transformed to provide 𝑈(𝑘, 0), and the recurrence relation is solved iteratively to compute  𝑈(𝑘, ℎ) for higher 𝑘 and ℎ. 

The approximate solution is then obtained via the inverse transform. 

1.3 Advantages of DTM 

Simplicity: DTM transforms PDEs into algebraic equations, which are easier to solve than differential equations. 

Accuracy: For smooth solutions, DTM provides highly accurate results with relatively few terms due to its Taylor series 

basis. 

Flexibility: It can handle both initial and boundary value problems and is applicable to linear and nonlinear equations. 

No Discretization: Unlike numerical methods like finite difference or finite element methods, DTM does not require spatial 

or temporal discretization. 

1.4 Limitations of DTM 

Convergence Issues: The Taylor series may have a limited radius of convergence, especially for problems with singularities 

or sharp gradients. 

 Computational Cost: Computing higher-order terms for the nonlinear term involves complex convolutions, increasing 

computational effort. 

 Truncation Errors: The accuracy depends on the number of terms used, and truncation may lead to errors for long-

time simulations. 
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2.   OVERVIEW OF THE ADOMIAN DECOMPOSITION METHOD (ADM) 

The Adomian Decomposition Method, developed by George Adomian in the 1980s, is a semi-analytical technique for 

solving linear and nonlinear differential equations. ADM decomposes the solution into an infinite series and handles 

nonlinear terms using Adomian polynomials, which represent the nonlinearities in a systematic way. The method has been 

widely applied to PDEs, including the Burgers equation, due to its ability to provide rapidly converging series solutions.  

2.1 Theoretical Basis of ADM 

ADM assumes that the solution to a differential equation can be expressed as an infinite series: 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

The differential equation is written in the form: 

𝐿𝑢 +  𝑅𝑢 +  𝑁𝑢 =  𝑔, 

where 𝐿 is the highest-order linear differential operator, 𝑅 is the remaining linear operator, 𝑁 represents the nonlinear term, 

and 𝑔 is the source term. For the Burgers equation, there is no source term 𝑔 =  0, and the nonlinear term is 𝑢
𝜕𝑢

𝜕𝑥
 . 

The inverse operator 𝐿−1 is applied to both sides, and the nonlinear term is expanded using Adomian polynomials 𝐴𝑛 , 

which are defined for a nonlinearity  𝑁𝑢 =  𝑓(𝑢) as: 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑓 (∑ 𝜆𝑘𝑢𝑘

∞
𝑘=0

)]

𝜆=0

 

The solution components 𝑢𝑛 are computed recursively, starting with an initial guess 𝑢0 , often based on the initial condition. 

2.2 Application of ADM to the Burgers Equation 

For the Burgers equation: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
=  𝜈

𝜕2𝑢

𝜕𝑥2
 

we define 𝐿 =  
𝜕

𝜕𝑡
 , so the inverse operator is 𝐿−1 =  ∫ . 𝑑𝑡

𝑡

0
  . The equation is rewritten as:   

𝐿𝑢 = −𝑢
𝜕𝑢

𝜕𝑥
+  𝜈

𝜕2𝑢

𝜕𝑥2
 

Applying  𝐿−1: 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝐿−1(𝜈
𝜕2𝑢

𝜕𝑥2
− 𝑢

𝜕𝑢

𝜕𝑥
)  

The solution is  𝑢 = ∑ 𝑢𝑛
∞
𝑛=0    , and the nonlinear term 𝑢

𝜕𝑢

𝜕𝑥
 is represented by Adomian polynomials 𝐴𝑛 . The recursive 

scheme is: 

𝑢0 = 𝑢(𝑥, 0) 

𝑢𝑛+1 = 𝐿−1 (𝑣
𝜕2𝑢𝑛

𝜕𝑥2
− 𝐴𝑛) , 𝑛 ≥ 0 

The Adomian polynomials for 𝑁𝑢 = 𝑢
𝜕𝑢

𝜕𝑥
 are computed as: 

𝐴0 =  𝑢0

𝜕 𝑢0

𝜕𝑥
 

𝐴1 =  𝑢0

𝜕 𝑢1

𝜕𝑥
+  𝑢1

𝜕 𝑢0

𝜕𝑥
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𝐴2 =   𝑢0

𝜕 𝑢2

𝜕𝑥
+  𝑢1

𝜕 𝑢1

𝜕𝑥
+  𝑢2

𝜕 𝑢0

𝜕𝑥
 

and so on. The solution is approximated by truncating the series:  

𝑢 ≈ ∑ 𝑢𝑛

𝑁

𝑛=0

 

2.3 Advantages of ADM 

 Rapid Convergence: For many problems, ADM provides accurate solutions with only a few terms. 

 Analytical Nature: The method yields a series solution that retains the analytical structure of the problem. 

 Handling Nonlinearity: Adomian polynomials systematically handle complex nonlinear terms. 

 No Discretization: Like DTM, ADM does not require mesh generation or numerical discretization. 

2.4 Limitations of ADM 

 Complexity of Polynomials: Computing Adomian polynomials for high-order terms can be computationally intensive, 

especially for strongly nonlinear problems. 

 Convergence Dependence: The convergence of the series depends on the initial condition and the nature of the 

nonlinearity, and it may fail for problems with discontinuities. 

 Long-Time Behavior: The series solution may diverge for large 𝑡, requiring modifications like the multistage ADM. 

3.   COMPARISON OF DTM AND ADM FOR THE BURGERS EQUATION 

To compare DTM and ADM, we evaluate their performance based on several criteria: ease of implementation, accuracy, 

computational efficiency, handling of nonlinearity, and applicability to different forms of the Burgers equation. 

3.1 Ease of Implementation 

 DTM: DTM is relatively straightforward to implement, as it involves transforming the PDE into a recurrence relation 

using predefined transform rules. However, computing the transform of the nonlinear term requires careful handling of 

convolutions, which can be tedious for high-order terms. 

 ADM: ADM requires the computation of Adomian polynomials, which can be more complex than DTM’s convolutions, 

especially for intricate nonlinearities. However, once the polynomials are derived, the recursive scheme is systematic 

and easy to code. 

Verdict: DTM is slightly easier to implement for beginners due to its reliance on Taylor series, but both methods require 

familiarity with their respective frameworks. 

3.2 Accuracy 

 DTM: DTM’s accuracy depends on the number of terms in the Taylor series. For smooth solutions ,DTM provides 

highly accurate results. However, for small 𝑣 or inviscid cases 𝑣 = 0, where shocks form, the series may diverge or 

require many terms to capture sharp gradients. 

 ADM: ADM often converges faster than DTM for smooth solutions, requiring fewer terms to achieve comparable 

accuracy. However, like DTM, its accuracy diminishes for problems with discontinuities or steep gradients unless 

modified. 

Verdict: ADM generally offers faster convergence for smooth solutions, but both methods struggle with discontinuities 

without modifications. 

3.3 Computational Efficiency 

 DTM: The computational cost of DTM increases with the number of terms, as the convolution for the nonlinear term 

involves nested sums. For large 𝑘 and ℎ, this can become computationally expensive. 
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 ADM: Computing Adomian polynomials is also computationally intensive, but the recursive nature of ADM often 

requires fewer iterations to achieve a given accuracy, making it potentially more efficient for smooth problems. 

Verdict: ADM is often more computationally efficient for problems where rapid convergence is achieved, but DTM may 

be faster for problems requiring only low-order terms. 

3.4 Handling of Nonlinearity 

 DTM: DTM handles nonlinearity through the convolution of transformed terms, which is systematic but grows in 

complexity with higher-order terms. 

 ADM: ADM’s Adomian polynomials are specifically designed to decompose nonlinear terms, providing a more 

structured approach to nonlinearity. This makes ADM particularly effective for strongly nonlinear problems. 

Verdict: ADM has an edge in handling complex nonlinearities due to the elegance of Adomian polynomials. 

3.5 Applicability to Different Forms of the Burgers Equation 

 Viscous Burgers Equation 𝒗 > 𝟎: 

Both methods perform well for the viscous case, where the diffusion term smooths the solution. DTM and ADM provide 

accurate series solutions that converge quickly for large 𝑣. 

 Inviscid Burgers Equation 𝒗 =0: 

In the inviscid case, the Burgers equation reduces to a hyperbolic PDE that develops shocks. Both DTM and ADM struggle 

to capture discontinuities without modifications, as their series solutions are based on smooth functions. Techniques like 

the multistage ADM or hybrid DTM approaches can improve performance. 

 Boundary Conditions: DTM is versatile in handling both initial and boundary value problems, as the transform can 

incorporate boundary conditions directly. ADM typically focuses on initial value problems but can be adapted for 

boundary conditions with additional effort. 

Verdict: Both methods are well-suited for the viscous Burgers equation, but their applicability to the inviscid case is limited 

without enhancements. 

4.   NUMERICAL EXAMPLE AND PERFORMANCE 

To illustrate the comparison, consider the viscous Burgers equation with  =  0.1 , initial condition  𝑢(𝑥, 0)  =  𝑠𝑖𝑛(𝜋 𝑥) , 

and periodic boundary conditions on [0,1]. Both DTM and ADM can be applied to compute the solution up to 𝑡 =  0.1. 

 DTM Implementation: Transform the equation, compute 𝑈(𝑘, 0) from the initial condition, and solve the recurrence 

relation for  𝑈(𝑘, ℎ). Truncate the series at, say, 𝑘 +  ℎ ≤ 10. The solution accurately captures the smooth decay of the 

sine wave due to viscosity. 

 ADM Implementation: Set 𝑢0 = sin (𝜋𝑥), compute Adomian polynomials for the nonlinear term, and recursively 

compute 𝑢𝑛. With 5–6 terms, ADM provides a solution comparable to DTM’s 10-term approximation. 

In this case, ADM typically requires fewer terms to achieve the same accuracy, but DTM’s implementation is more 

straightforward due to its algebraic nature. For small 𝑣, both methods require more terms, and their accuracy may degrade 

near steep gradients unless modified. 

5.   CONCLUSION 

The Differential Transform Method and the Adomian Decomposition Method are both effective semi-analytical tools for 

solving the Burgers equation, particularly in its viscous form. DTM excels in its simplicity and flexibility, making it an 

excellent choice for problems with smooth solutions and well-defined initial or boundary conditions. ADM, on the other 

hand, offers faster convergence and a more structured approach to nonlinearity, making it preferable for strongly nonlinear 

problems where rapid convergence is critical. 

However, both methods face challenges with the inviscid Burgers equation or problems with discontinuities, requiring 

modifications like multistage approaches or hybridization with numerical methods. In terms of computational efficiency, 

ADM often outperforms DTM for smooth solutions, but DTM’s ease of implementation makes it more accessible to 

practitioners. 
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Ultimately, the choice between DTM and ADM depends on the specific problem, the desired balance between accuracy and 

computational cost, and the user’s familiarity with each method. For the Burgers equation, both methods are powerful tools 

that complement numerical approaches, offering valuable insights into the behavior of nonlinear PDEs. 
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